

 Navigation

 	
 index

 	
 modules |

 	webobtoolkit 0.1.3 documentation

Welcome to webobtoolkit

Webobtoolkit is a set of utilities that can be used to compose HTTP
clients.

Getting Started with WebObToolKit

Webob toolkit provides an easy way out of the box to interact with web
sites or wsgi applications. A webob response is returned for every
call so you can leverage your webob knowledge. It may also be useful
for people already familiar with WSGI and WSGI middleware.

The Client

The webobtoolkit client contains a lot of the typical functionality
you need in an HTTP client. All current HTTP verbs are
supported(GET,POST,PUT,DELETE,OPTIONS,HEAD,...). Each of the methods
takes a url, query string, and an optional assert method and returns a webob Response object.

getting a response from a website

Here’s an example of how to get a response from wikipedia.org

"""
getting a response from wikipedia.org
"""
from webobtoolkit.client import Client
client = Client()
print client.get("http://en.wikipedia.org/wiki/HTTP")

getting a response from a WSGI application

Most python web frameworks provide a way to expose your web
application as a WSGI app, webobtoolkit can interact with WSGI apps
just as if they were running on a web server. This can provide a way
for you to unit test your application without the web server overhead.

"""
getting a response from a wsgi application
"""
from webobtoolkit import client

def application(environ, start_response):
 """
 most python webframeworks provide a way to expose your web
 application as a WSGI app. consult your framework documentation
 for details.
 """
 status = "200 OK" # HTTP messages have a status
 body = "Hello World" # HTTP messages have a body

 # HTTP messages have headers to describe various things, at a
 # minimum describing the type(Content-Type) and the length of the
 # content(Content-Length)
 headers = [("Content-Type", "text/plain"),
 ("Content-Length",
 str(len(body)))]

 start_response(status, headers) # calling the function passed in
 # with the status and headers of
 # the HTTP Response Message

 return [body] # returning a list containing the body of the HTTP
 # Response Message

print client.Client(pipeline=client.client_pipeline(application)).get("/")

As you can see by the example, all you need to do is construct a
client pipeline around your wsgi application. A client pipeline is
merely wsgi middleware that handles things that an HTTP client would
need to handle like cookies and gzip responses.

parameter passing

Often when interacting with websites or wsgi applications you will
need to pass paramters. HTTP provides a couple of ways to do that. One
is via query string.

query string

The webobtoolkit client can take a query string as either a string or
dictionary like object. Here’s an example of using google’s ajax
search api.

"""
passing parameters as a query string
"""
from webobtoolkit.client import Client
client = Client()
result = client.get("http://ajax.googleapis.com/ajax/services/search/web",
 query_string=dict(v="1.0", q="define: HTTP")).json
for k, v in result.items():
 print k, ":", v

form posts

Another way to pass data to a website or wsgi application is through
form posts. This example also shows how you might do an assert on the
response in order to determine how your logic should proceed.

"""
passing parameters as a form post
"""
from webobtoolkit.client import Client
client = Client()

def assert_success(request, response):
 """
 if response status != 200 then raise an error
 """

 if response.status_int != 200:
 raise Exception("Did not get a valid response from %s" % request.url)

print client.post("http://ajax.googleapis.com/ajax/services/search/web",
 post=dict(v="1.0", q="define: HTTP"),
 assert_=assert_success)

upload files

WebobToolkit also provides a way to programatically upload files.

"""
uploading files example
"""
from webobtoolkit.client import Client, client_pipeline
from webob import Request, Response

def application(environ, start_response):
 """this application merely spits out the keys of the form that was
 posted. we are using webob Request and Response for brevity
 """
 request = Request(environ)
 return Response(str(request.POST.keys()))(environ, start_response)

client = Client(pipeline=client_pipeline(application))
print client.post("/", files=dict(file1=("myfile.txt",
 "this is a file containing this text")))

built ins

gzip responses

some websites return a response that is compressed in order to reduce
bandwidth. By default webobtoolkit can detect and uncompress the
responses automatically for you

cookie support

by default webobtoolkit handles cookies and will submit them
automatically as part of subsequent requests.

optional logging

The client pipeline has optional logging of both the request and the
response. Here’s an example of how to enable it.

Once enabled, the request and the response will be logged at whichever
log level you specificed.

"""
enable logging of request and response
"""
from webobtoolkit import client
import logging
logging.basicConfig(level=logging.DEBUG)

c = client.Client(client.client_pipeline(logging=True, log_level=logging.DEBUG))
c.get("http://google.com")

Contents:

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Tom Willis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	webobtoolkit 0.1.3 documentation

 Python Module Index

 w

 			

 		
 w	

 	[image: -]
 	
 webobtoolkit	

 	
 	
 webobtoolkit.filters	

 Copyright 2012, Tom Willis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	webobtoolkit 0.1.3 documentation

Index

 A
 | C
 | D
 | G
 | H
 | O
 | P
 | R
 | W

A

 	

 	assert_filter() (in module webobtoolkit.filters)

 	

 	auto_redirect_filter() (in module webobtoolkit.filters)

C

 	

 	charset_filter() (in module webobtoolkit.filters)

 	Client (class in webobtoolkit.client)

 	

 	client_pipeline() (in module webobtoolkit.client)

 	cookie_filter() (in module webobtoolkit.filters)

D

 	

 	decode_filter() (in module webobtoolkit.filters)

 	

 	delete() (webobtoolkit.client.Client method)

G

 	

 	get() (webobtoolkit.client.Client method)

H

 	

 	head() (webobtoolkit.client.Client method)

 	http_capture_filter() (in module webobtoolkit.filters)

 	

 	http_log_filter() (in module webobtoolkit.filters)

O

 	

 	options() (webobtoolkit.client.Client method)

P

 	

 	post() (webobtoolkit.client.Client method)

 	

 	put() (webobtoolkit.client.Client method)

R

 	

 	RequestCookieAdapter (class in webobtoolkit.filters)

 	

 	ResponseCookieAdapter (class in webobtoolkit.filters)

W

 	

 	webobtoolkit.filters (module)

 Copyright 2012, Tom Willis.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

client.html

 Navigation

 		
 index

 		
 modules |

 		webobtoolkit 0.1.3 documentation »

client

by now, hopefully you are somewhat familiar with the wsgi interface
and how webob Request and Response play a role.

We’ve seen numerous examples of how small snippets of wsgi middleware
can be composed into a pretty functional application that communicates
via HTTP.

We’ve also covered how those applications can be hosted by a web
server and then interacted with by web browsers or other clients.

And finally we saw that any website can be accessed as if it were a
python callable that adheres to the wsgi interface.

WebObToolkit includes a client that you can use for interacting with
wsgi applications and other websites. You can use it to test wsgi
applications or websites, or use it as a means of using services from
those applications or websites in your programs.

"""
example client usage
"""
from webobtoolkit.client import Client, client_pipeline
from webobtoolkit.proxy import send_request_app
import logging
logging.basicConfig(level="DEBUG")

first we make an pipeline
pipeline = client_pipeline(wsgi=send_request_app, # this wsgi app sends the request to the url you specify
 cookie_support=True, # turn on cookie support
 content_decoding=True, # decompress responses if necessary
 logging=True, # turn on logging
 log_level="DEBUG") # set log level

client = Client(pipeline=pipeline)

response = client.get("http://www.google.com", query_string=(dict(q="wsgi as http client")))

assert response.status_int == 200, "something went wrong"

In the above code you see that we are constructing a client_pipeline
to give the client to use. By default it will use
webobtoolkit.client.client_app an instance of
webobtoolkit.client.client_pipeline <Reference> which is pre-configured for
cookie support and gzip content decoding.

Reference

		
webobtoolkit.client.client_pipeline(app=<webob.client.SendRequest instance>, cookie_support=True, content_decoding=True, logging=False, log_level=None)

		

		Return type:		pre-configured WSGI Application

		Parameters:		app – is a WSGI Application to wrap, the default

is webob.client.send_request_app

		Parameters:		cookie_support – enables/disables the

filters.cookie_filter()

		Parameters:		content_decoding – enables/disables the

filters.decode_filter()

		Parameters:		
		logging – enables/disables the filters.http_log_filter()

		log_level – the log_level for filters.http_log_filter()

		
class webobtoolkit.client.Client(pipeline=None, assert_=None)

		

		Parameters:		pipeline – wsgi application to pass requests to, default is

client.client_app()

		Parameters:		assert – a callback lambda: request, response: True that

will be called for every call to app

		
delete(url, query_string=None, post={}, headers={}, assert_=None)

		make an HTTP DELETE Request and return the response

		Return type:		webob.Response

		Parameters:		
		url – the url for the request

		query_string – the querystring dict which will be urlencoded for you

		post – form post

		headers – extra headers fpr the request

		assert – a callback to be ran after the response is recieved in the form of lambda: request, response: True . If present it will be ran for this call only rather than the one set on the client

		
get(url, query_string=None, headers={}, assert_=None)

		make an HTTP GET Request and return the response

		Return type:		webob.Response

		Parameters:		
		url – the url for the request

		query_string – the querystring dict which will be

urlencoded for you

		Parameters:		
		headers – extra headers for the request

		assert – a callback to be ran after the response is

recieved in the form of lambda: request, response: True . If
present it will be ran for this call only rather than the one
set on the client

		
head(url, query_string=None, headers={}, assert_=None)

		make an HTTP HEAD Request and return the response

		Return type:		webob.Response

		Parameters:		
		url – the url for the request

		query_string – the querystring dict which will be urlencoded for you

		headers – extra headers for the request

		assert – a callback to be ran after the response is

recieved in the form of lambda: request, response: True . If
present it will be ran for this call only rather than the one
set on the client

		
options(url, query_string=None, post={}, headers={}, assert_=None)

		make an HTTP OPTIONS Request and return the response

		Return type:		webob.Response

		Parameters:		
		url – the url for the request

		query_string – the querystring dict which will be urlencoded for you

		post – form post

		headers – extra headers fpr the request

		assert – a callback to be ran after the response is recieved in the form of lambda: request, response: True . If present it will be ran for this call only rather than the one set on the client

		
post(url, query_string=None, post={}, headers={}, assert_=None, files={})

		make an HTTP POST Request and return the response

		Return type:		webob.Response

		Parameters:		
		url – the url for the request

		query_string – the querystring dict which will be

urlencoded for you

		Parameters:		
		post – form post

		headers – extra headers fpr the request

		assert – a callback to be ran after the response is

recieved in the form of lambda: request, response: True . If
present it will be ran for this call only rather than the one
set on the client

		
put(url, query_string=None, post={}, headers={}, assert_=None)

		make an HTTP PUT Request and return the response

		Return type:		webob.Response

		Parameters:		
		url – the url for the request

		query_string – the querystring dict which will be

urlencoded for you

		Parameters:		
		post – form post

		headers – extra headers fpr the request

		assert – a callback to be ran after the response is

recieved in the form of lambda: request, response: True . If
present it will be ran for this call only rather than the one
set on the client

 © Copyright 2012, Tom Willis.
 Created using Sphinx 1.3.1.

cookbook.html

 Navigation

 		
 index

 		
 modules |

 		webobtoolkit 0.1.3 documentation »

Cook Book

 © Copyright 2012, Tom Willis.
 Created using Sphinx 1.3.1.

send_request_app.html

 Navigation

 		
 index

 		
 modules |

 		webobtoolkit 0.1.3 documentation »

client_app

So far we have seen examples of interacting with wsgi
applications as callables to get HTTP Response
messages. And it was mentioned that you would typically interact with
web applications through a web server.

Wouldn’t it be nice if you could interact with web servers in the same
way in your code as you would the wsgi applications, as simple callables? But can you do that? after
all the internet is old, and surely not every website knows how to
communicate via wsgi right? because that’s a python
thing.

While you would be right that wsgi is a python thing, and not every
website knows wsgi, if you thought it was impossible, you would be
incorrect. Why is that? Well, it’s because though every website may
not understand wsgi, every website does understand HTTP by
definition. If a web server didn’t understand HTTP, it wouldnt be a
website.

So how would you interact with a website? Simple, you use a
wsgi application that takes an HTTP Request message and
sends it out over TCP/IP to the address specified by the url, and then
returns whatever HTTP Response message it is given.

"""
client usage
"""
from webob import Request
from webobtoolkit.client import client_app
let's do a google search and print the response
request = Request.blank("http://www.google.com?q=%s" % "wsgi+as+http+client")
print str(request.send())
or
print str(request.send(client_app) # for cookie support, content decoding support

will print lots of stuff

And you didn’t even have to learn SOAP or WSDL or generate stub code
to do that. NEAT!!!!

 © Copyright 2012, Tom Willis.
 Created using Sphinx 1.3.1.

overview.html

 Navigation

 		
 index

 		
 modules |

 		webobtoolkit 0.1.3 documentation »

Overview

WSGI

The official definition is that the wsgi [http://www.wsgi.org] protocol is the protocol
for a web server and application servers to communicate. PEP 333 [http://www.python.org/dev/peps/pep-0333]
describes this protocol in detail. But for most developers all you
really need to know is that it is a low level standard for
programs/processes/objects/ and functions to communicate via HTTP [http://www.w3.org/Protocols/rfc2616/rfc2616.html]
. If you don’t know what HTTP [http://www.w3.org/Protocols/rfc2616/rfc2616.html] is, well, use google and read up,
that stuff is important if you are developing web applications.

WSGI Application

A wsgi application [http://webpython.codepoint.net/wsgi_application_interface] is an application that implements the wsgi [http://www.wsgi.org]
protocol. Sounds enterprisey doesn’t it? It’s really quite simple to
implement. It’s a callable(or function) that takes 2 parameters and
returns a list.

Here is the simplest wsgi application [http://webpython.codepoint.net/wsgi_application_interface] you can make.

"""
wsgi_app.py
"""

def application(environ, start_response):
 status = "200 OK" # HTTP messages have a status
 body = "Hello World" # HTTP messages have a body

 # HTTP messages have headers to describe various things, at a
 # minimum describing the type(Content-Type) and the length of the
 # content(Content-Length)
 headers = [("Content-Type","text/plain"),
 ("Content-Length",str(len(body)))]

 start_response(status, headers) # calling the function passed in
 # with the status and headers of
 # the HTTP Response Message

 return [body] # returning a list containing the body of the HTTP
 # Response Message

THAT’S IT!!!!! NO FRAMEWORK NEEDED, other than the standard library.

Though this application can recieve and return messages that conform
to the HTTP [http://www.w3.org/Protocols/rfc2616/rfc2616.html] protocol, this doesn’t mean you can now magically point
your web browser at this function and get “Hello World” displayed in
the page. For that you need a WSGI Web Server.

WSGI Web Server

So what is a web server? it’s a application that communicates via HTTP [http://www.w3.org/Protocols/rfc2616/rfc2616.html]
typically over TCP/IP. We will not cover TCP/IP here. There’s plenty
of information elsewhere. What you need to know is that anything that can
communicate via TCP/IP is generally reachable on a port at an IP address.

So in order to get the above application to be reachable by your web
browser, it needs a web server to listen on a port at a specific IP
address and when an HTTP [http://www.w3.org/Protocols/rfc2616/rfc2616.html] Request Message comes in, it would call our
application.

The python standard library comes with several web servers, but not
all of them can be told to call our application. Here’s an example

"""
wsgi_server.py
"""
from wsgi_app import application
from wsgiref.simple_server import make_server

 # listen on the local address so that it's only reachable by the
 # machine it's running on. on port 8080, when a HTTP Request is
 # recieved, call application(environ, start_response)
server = make_server("localhost", 8080, application)

after you recieve one HTTP Request, handle it than quit.
server.handle_request()

Running wsgi_server.py and pointing your browser at
http://localhost:8080 would cause the WSGI Application to spit out a
HTTP [http://www.w3.org/Protocols/rfc2616/rfc2616.html] Response Message who’s body contains the text “Hello World”

Calling WSGI Application’s(they’re all just python callables)

Typically a wsgi application [http://webpython.codepoint.net/wsgi_application_interface] is made available to call over TCPI/IP by
a webserver that knows the wsgi [http://www.wsgi.org] protocol. But as was stated earlier a
wsgi application [http://webpython.codepoint.net/wsgi_application_interface] is just a callable that takes 2 parameters and returns
a list (after calling the second parameter “start_response”).

So as you may have guessed a wsgi application [http://webpython.codepoint.net/wsgi_application_interface] can be called just like
any other function or callable if provided the input it
expects. Though calling them this way might be a little more
complicated than necessary for general functions. Still, it is
important to remember that in the end, a wsgi application [http://webpython.codepoint.net/wsgi_application_interface] is nothing
more than a python callable that you likely use everytime you write
code in python.

In the rest of the documentation we will show how to exploit the fact
that a wsgi application [http://webpython.codepoint.net/wsgi_application_interface] is just a python callable, and what cool
things you can do.

Middleware

Now that you know that a WSGI application is nothing more than a python
callable/function that takes 2 parameters and returns a list, we need
to cover the concept of middleware. Yet another concept that sounds
enterprisey but it’s really simple.

Middleware is a python callable that is given a WSGI application that returns a WSGI application. That’s it.

"""
middleware.py
"""

def do_nothing(application):
 def m(environ, start_response):
 # could do something cool here before calling the application
 return application(environ, start_response)
 return m

def do_nothing_2(application):

 def m(environ, start_response):
 #setup someway to capture the inner applications status and
 #headers
 inner_status = None
 inner_headers = []

 def inner_start_response(status, headers):
 inner_status = status
 inner_headers = headers

 # before the application is called
 application_body = application(environ, inner_start_response)

 # could do something after the application is called, but
 # instead we will pass things along
 start_response(inner_status, inner_headers)
 return application_body
 return m

Let your imagination run wild for a second, think of what you could do
if you could manipulate the HTTP Request message before calling
another application, or think what you could do if you could
manipulate the HTTP Response message before it is returned to the
caller(which could be another function, middleware, or even the
browser).

Here are things that could be good uses for middleware.

		log the incoming HTTP Request message and the outgoing HTTP
Response message

		You could replace words in the HTTP Response message body

		Add or remove headers from the HTTP Request message or HTTP
response message.

		return a completely fabricated HTTP Response message and not even
call the inner application

So as you can see, there’s some pretty cool things you can do to the
HTTP Request and Response messages in middleware. But, the example
above looks pretty intimidating.

And we haven’t even gotten into any examples of how to manipulate form
input on an HTTP Request message yet because these first few sections
we wanted to emphasize what the interface actually is.

Unless you are an uber hacker with a lot of time on their hands, or
you are bored, you would likely never write WSGI applications
<wsgi_application> or middleware this way. Especially given there are
so many libraries and frameworks that make it easier to do.

Still, like it was stated at the beginning, it is beneficial to know
what’s going on because the abstractions will fail you, and when they
do, you need to know what’s going on. Heck even WSGI is an abstraction
and it’s not without it’s faults.

In the next section we cover what webob is, what webob has to do with
wsgi, and what you can do with it.

WebOb

If you were to write a significant application using just wsgi,
inevitably you would become intimately familiar with HTTP. If you are
a good software developer, eventually you would come up with your own
representation of a HTTP Request message and a HTTP Response
message given enough time and energy.

You would do this so that all of the little quirks and edge
cases of dealing with HTTP could be held in once place in your code
rather than repeated all over you code base.

Well guess what, likely every web framework in existence has
eventually grown it’s own representation of a HTTP Request message
and HTTP Response message, or they used a library such as webob [http://docs.webob.org].

The WebOb [http://docs.webob.org] library makes it easier for you to deal with wsgi and HTTP
Request and Response messages.

Here’s an example of a wsgi application, wsgi middleware and wsgi web
server that we have previously discussed.

"""
webob_wsgi.py
"""
from webob import Request, Response
from wsgiref.simple_server import make_server

def wsgi_hello_app(environ, start_response):
 response = Response("Hello World")

 #did you know that Response is a wsgi application
 return response(environ, start_response)

or this one-liner, because Response is a wsgi application
wsgi_hello_app = Response("Hello World")

def wsgi_hello_middleware(app):
 def m(environ, start_response):
 request = Request(environ)

 # request is a lot easier to manipulate than a dictionary
 # let's add a header to prove a point
 request.headers["WSGI-Hello-Middleware"] = "Say Hello Application"

 # call a wsgi app and convert what it returns into a
 # webob.Response which is easier to manipulate
 response = request.get_response(app)

 response.headers["WSGI-Application-Middleware"] = "Say Hello Caller"
 return response(environ, start_response)
 return m

application = wsgi_hello_middleware(wsgi_hello_app)
server = make_server("localhost", 8080, application)
server.handle_request()

And WebOb [http://docs.webob.org] is well tested, well documented and supports python 2.6
through python 3.x. And thank goodness for the docs, because now if
you have questions on how to use WebOb [http://docs.webob.org], you can just go read. :)

 © Copyright 2012, Tom Willis.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		webobtoolkit 0.1.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Tom Willis.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

filters.html

 Navigation

 		
 index

 		
 modules |

 		webobtoolkit 0.1.3 documentation »

Filters

Filters are a collection of useful(in the authors opinion) wsgi
middleware that is more client-centric than
server-centric, you may find it useful too.

http_capture_filter

this filter captures the request and response and calls a function you
provide so that you can do what you will. it’s important to note that
the request and response you recieve are copies and modifying them
does not effect the request or the response going to the application
or client.

It is primarily used by the http_log_filter

def http_capture_filter(app, callback=lambda request, response: True):
 """
 captures request and response and passes off to a callback

 :rtype: :ref:`wsgi_application`

 :param app: inner :ref:`wsgi_application`

 :param callback: function to call
 """

 def m(environ, start_response):
 request = Request(environ)
 response = request.get_response(app)
 callback(request.copy(), response.copy())
 return response(environ, start_response)
 return m

http_log_filter

The http_log_filter will log both the request and the response to the
log_level you provide. The default level is “DEBUG”, it’s handy when
you need to see what the http traffic looks like in your application,
but using it in production would insure you have huge log files that
you would likely never read.

def http_log_filter(app, level="DEBUG"):
 """
 logs the request and response to the logger http_log at whatever
 level you specify

 :rtype: :ref:`wsgi_application`

 :param app: inner :ref:`wsgi_application`

 :param level: log level
 """
 level_int = logging._checkLevel(level)
 log = logging.getLogger("http_log")

 def _log_it(request, response):
 log.log(level=level_int, msg=l.PRINT_REQ(request))
 log.log(level=level_int, msg=l.PRINT_RES(response))
 return http_capture_filter(app, callback=_log_it)

charset_filter

Some websites won’t specify a charset on the response, this can
sometimes be problematic. this filter will check if the charset
attribute is set, and if it isn’t it will set it to utf8 which is a
pretty safe bet in most cases.

def charset_filter(app):
 """
 if charset is missing, set it to a pretty much safe utf8

 :rtype: :ref:`wsgi_application`

 :param app: inner :ref:`wsgi_application`

 """
 def m(environ, start_response):
 request = Request(environ)
 res = request.get_response(app)
 if not res.charset:
 res.charset = "utf8"
 return res(environ, start_response)
 return m

decode_filter

Websites can return compressed responses. This filter will handle
de-compressing them if a compressed response is detected.

def decode_filter(app):
 """
 decode the content(in case it's gzipped)

 BUG: for some reason, appengine doesn't respond to this and
 doesn't send gziped when asked.

 :rtype: :ref:`wsgi_application`

 :param app: inner :ref:`wsgi_application`

 """
 def m(environ, start_response):
 request = Request(environ)
 request.accept_encoding = "gzip"
 response = request.get_response(app)
 response.decode_content()
 return response(environ, start_response)
 return m

assert_filter

Sometimes you want to raise an error if you get a response under
certain conditions. This filter allows you to specify a function to do
that assertion before the response is returned. The function you
specify will be passed a copy of the request and response.

def assert_filter(app, assert_=lambda request, response: True):
 """
 will allow for assertions to be made on the request and response.

 :rtype: :ref:`wsgi_application`

 :param app: inner :ref:`wsgi_application`

 """
 def m(environ, start_response):
 request = Request(environ)
 response = request.get_response(app)
 assert_(request.copy(), response.copy())
 return response(environ, start_response)

 return m

cookie_filter

Sometime when you are communicating with wsgi applications over several requests, you need to handle the
cookies in order for the application to respond correctly, for example
if you have to login before doing anything else. This filter handles
all the gory details of cookie handling for you.

def cookie_filter(app):
 """
 intercepts req/res and keeps track of cookies

 :rtype: :ref:`wsgi_application`

 :param app: inner :ref:`wsgi_application`
 """
 jar = CookieJar()

 def m(environ, start_response):
 request = Request(environ)
 jar.add_cookie_header(RequestCookieAdapter(request))
 response = request.get_response(app)
 cookies = jar.make_cookies(ResponseCookieAdapter(response),
 RequestCookieAdapter(request))
 for c in cookies:
 jar.set_cookie(c)

 return response(environ, start_response)
 return m

Usage

Filters can be combined to suit your needs. For example you could
compose a wsgi application to support
cookies and compressed responses and raise an error if the
inner application responds with a status code of “401”, which means
access denied.

"""
using filters
"""
from webobtoolkit import filters
from webob import Request, Response
import datetime

def time_application(environ, start_response):
 body = "the current time is %s " % datetime.datetime.now().isoformat()
 return Response(body)(environ, start_response)

add cookie support
application = filters.cookie_filter(time_application)

decompress the response if it is compressed
application = filters.decode_filter(time_application)

raise an error the app returns something other than a 200 success
response
def assert_success(request, response):
 assert response.status_int == 200, "the request was not sucessful"

application = filters.assert_filter(time_application, assert_=assert_success)

response = Request.blank("/").get_response(application)

print str(response)

Reference

filters for taking care of various aspects of HTTP

		
class webobtoolkit.filters.RequestCookieAdapter(request)

		this class merely provides the methods required for a
cookielib.CookieJar to work on a webob.Request

potential for yak shaving...very high

		
class webobtoolkit.filters.ResponseCookieAdapter(response)

		this class merely provides methods required for a
cookielib.CookieJar to work on a webob.Response

		
webobtoolkit.filters.assert_filter(app, assert_=<function <lambda>>)

		will allow for assertions to be made on the request and response.

		Return type:		WSGI Application

		Parameters:		app – inner WSGI Application

		
webobtoolkit.filters.auto_redirect_filter(app, limit=10)

		intercepts response, if response.status is redirectish(301, 302)
will make the next call

		
webobtoolkit.filters.charset_filter(app)

		if charset is missing, set it to a pretty much safe utf8

		Return type:		WSGI Application

		Parameters:		app – inner WSGI Application

		
webobtoolkit.filters.cookie_filter(app)

		intercepts req/res and keeps track of cookies

		Return type:		WSGI Application

		Parameters:		app – inner WSGI Application

		
webobtoolkit.filters.decode_filter(app)

		decode the content(in case it’s gzipped)

BUG: for some reason, appengine doesn’t respond to this and
doesn’t send gziped when asked.

		Return type:		WSGI Application

		Parameters:		app – inner WSGI Application

		
webobtoolkit.filters.http_capture_filter(app, callback=<function <lambda>>)

		captures request and response and passes off to a callback

		Return type:		WSGI Application

		Parameters:		
		app – inner WSGI Application

		callback – function to call

		
webobtoolkit.filters.http_log_filter(app, level='DEBUG')

		logs the request and response to the logger http_log at whatever
level you specify

		Return type:		WSGI Application

		Parameters:		
		app – inner WSGI Application

		level – log level

 © Copyright 2012, Tom Willis.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/down.png

