webobtoolkit Documentation
Release 0.1.3

Tom Willis

August 16, 2015

Contents

1 Getting Started with WebObToolKit 3
1.1 The Client e e e e e e e e e e 3

2 Indices and tables 7

webobtoolkit Documentation, Release 0.1.3

Webobtoolkit is a set of utilities that can be used to compose HTTP clients.

Contents 1

webobtoolkit Documentation, Release 0.1.3

2 Contents

CHAPTER 1

Getting Started with WebObToolKit

Webob toolkit provides an easy way out of the box to interact with web sites or wsgi applications. A webob response
is returned for every call so you can leverage your webob knowledge. It may also be useful for people already familiar
with WSGI and WSGI middleware.

1.1 The Client

The webobtoolkit client contains a lot of the typical functionality you need in an HTTP client. All current HTTP verbs
are supported(GET,POST,PUT,DELETE,OPTIONS,HEAD.,...). Each of the methods takes a url, query string, and an
optional assert method and returns a webob Response object.

1.1.1 getting a response from a website

Here’s an example of how to get a response from wikipedia.org

mmwn

getting a response from wikipedia.org

from webobtoolkit.client import Client

client = Client ()

print client.get ("http://en.wikipedia.org/wiki/HTTP")

1.1.2 getting a response from a WSGI application

Most python web frameworks provide a way to expose your web application as a WSGI app, webobtoolkit can interact
with WSGI apps just as if they were running on a web server. This can provide a way for you to unit test your
application without the web server overhead.

mwn

getting a response from a wsgl application
mmn

from webobtoolkit import client

def application(environ, start_response):
mmwn
most python webframeworks provide a way to expose your web
application as a WSGI app. consult your framework documentation
for details.

webobtoolkit Documentation, Release 0.1.3

mon

status = "200 OK" # HTTP messages have a status
body = "Hello World" # HTTP messages have a body

HTTP messages have headers to describe various things, at a
minimum describing the type (Content-Type) and the length of the
content (Content—-Length)
headers = [("Content-Type", "text/plain"),
("Content-Length",
str(len(body)))]

start_response (status, headers) # calling the function passed in
with the status and headers of
the HTTP Response Message

return [body] # returning a list containing the body of the HTTP
Response Message

print client.Client (pipeline=client.client_pipeline (application)) .get ("/")

As you can see by the example, all you need to do is construct a client pipeline around your wsgi application. A client
pipeline is merely wsgi middleware that handles things that an HTTP client would need to handle like cookies and
gzip responses.

1.1.3 parameter passing

Often when interacting with websites or wsgi applications you will need to pass paramters. HTTP provides a couple
of ways to do that. One is via query string.

query string

The webobtoolkit client can take a query string as either a string or dictionary like object. Here’s an example of using
google’s ajax search api.

mwn

passing parameters as a query string
mmn

from webobtoolkit.client import Client
client = Client ()

result = client.get ("http://ajax.googleapis.com/ajax/services/search/web",
query_string=dict (v="1.0", g="define: HTTP")).Jjson
for k, v in result.items():
print k, ":", v
form posts

Another way to pass data to a website or wsgi application is through form posts. This example also shows how you
might do an assert on the response in order to determine how your logic should proceed.

mown

passing parameters as a form post

mmn

from webobtoolkit.client import Client
client = Client ()

4 Chapter 1. Getting Started with WebObToolKit

webobtoolkit Documentation, Release 0.1.3

def assert_success(request, response):

mmn

if response status != 200 then raise an error
mmwmn
if response.status_int != 200:
raise Exception("Did not get a valid response from " % request.url)

print client.post ("http://ajax.googleapis.com/ajax/services/search/web",
post=dict (v="1.0", g="define: HTTP"),
assert_=assert_success)

upload files

WebobToolkit also provides a way to programatically upload files.

mn

uploading files example

mmn

from webobtoolkit.client import Client, client_pipeline
from webob import Request, Response

def application(environ, start_response):
"""this application merely spits out the keys of the form that was
posted. we are using webob Request and Response for brevity
request = Request (environ)
return Response (str (request.POST.keys ())) (environ, start_response)

client = Client (pipeline=client_pipeline (application))
print client.post("/", files=dict (filel=("myfile.txt",
"this is a file containing this text")))

1.1.4 built ins

gzip responses

some websites return a response that is compressed in order to reduce bandwidth. By default webobtoolkit can detect
and uncompress the responses automatically for you

cookie support

by default webobtoolkit handles cookies and will submit them automatically as part of subsequent requests.

1.1.5 optional logging

The client pipeline has optional logging of both the request and the response. Here’s an example of how to enable it.

Once enabled, the request and the response will be logged at whichever log level you specificed.

1.1. The Client 5

webobtoolkit Documentation, Release 0.1.3

mwn

enable logging of request and response

mmn

from webobtoolkit import client

import logging
logging.basicConfig(level=logging.DEBUG)

c = client.Client (client.client_pipeline (logging=True, log_level=logging.DEBUG))
c.get ("http://google.com")

Contents:

6 Chapter 1. Getting Started with WebObToolKit

CHAPTER 2

Indices and tables

¢ genindex
* modindex

e search

	Getting Started with WebObToolKit
	The Client

	Indices and tables

